

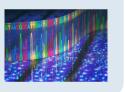
An innovative germline DNA test which predicts genetic susceptibility to severe 5FU/capecitabine toxicity



# ToxNav workflow steps 1–7:



- Patients offered fluoropyrimidine chemotherapy
- ToxNav test requested by clinician




- Blood sample taken (EDTA)
- Sample requisition form and blood sample sent to laboratory



- Sample and requisition form received and logged by laboratory
- DNA extracted

- 4
- Sequencing carried out to detect genotype of 19 variants
- Data managed via secure server



# 5

- Results transmitted from lab to OCB analysis suite
- Data imported to ToxNav software



6

| Phenotype<br>(genotype)          | ToxNav Risk<br>Category        | Implications for<br>Phenotypic Measures                                                       | Dosing Recommendations<br>(for patients with no other contraindicating factors)      |
|----------------------------------|--------------------------------|-----------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|
| DPYD normal<br>metabolizer       | Standard Risk                  | Normal DPYD activity and normal risk of toxicity                                              | No indication to change dose or therapy                                              |
|                                  | Standard Risk<br>High Risk HFS | Normal DPYD activity and normal risk of<br>toxicity. High risk of Hand-Foot Syndrome<br>(HFS) | No indication to change dose or therapy<br>Prevent HFS according to local guidelines |
| DPYD intermediate<br>metabolizer | High Risk                      | Decreased DPYD activity and increased risk of severe or fatal toxicity                        | A capecitabine or 5FU monotherapy dose reduction of 50% is recommended               |
| DPYD poor<br>metabolizer         | Critical Risk                  | Complete DPYD deficiency and increased risk for severe or fatal toxicity                      | Capecitabine or 5FU therapy is contraindicated<br>and should not be administered     |

ToxNav risk stratification and dosing recommendation (based on guidelines from Amstutz et al, 2017<sup>1</sup>)





- ToxNav report is received by the clinician within ten working days of sample receipt
- The toxicity risk is discussed with the patient and a personalised treatment decision is made





### A novel assay to predict 5FU/capecitabine toxicity



# What is ToxNav?

- A comprehensive panel of 19 genetic variants associated with 5FU/capecitabine toxicity in the DPYD and TYMS/ENOSF1 genes<sup>2</sup>
  - Includes variants not found in other panels:
    - Variants found at a relatively low population frequency linked to severe (Grade 4) toxicities that may have fatal consequences
    - Hand Foot Syndrome
  - Uses the proprietary ToxNav algorithm to determine patient risk category
  - Panel derived from meta-analysis of all published genes associated with 5FU toxicity (n=4,855)<sup>3,4</sup>
- Developed using QUASAR 2 clinical trial samples and data set<sup>2</sup>
  - Well-documented toxic effects using CTCAE classifications

## What does ToxNav do?

- Stratifies patients into risk groups based on their individual genotype
- 100% specificity for identification of people likely to die from 5FU/capecitabine toxicity<sup>5</sup>
- Identifies risk of Grade 4 haematological toxicities with a high degree of accuracy (98% specificity, 75% sensitivity, NPV 1, PPV 0.14)<sup>5</sup>

#### Why use ToxNav?

- Comprehensive panel of genetic variants providing optimum detection in general population
- Clinical validation<sup>5</sup> in 888 colorectal patient samples from a large scale clinical trial<sup>2</sup>
- Could save 10 lives in every 1,000 patients tested
- Potential savings of >£2,500 per patient who avoids Grade 3+ toxicities<sup>6</sup>
- Meets patient safety and enhanced patient experience standards (NHS Outcomes Framework)<sup>7</sup>

#### References:

- 1 Amstutz et al. Clinical Pharmacogenetics Implementation Consortium (CPIC) Guideline for Dihydropyrimidine Dehydrogenase Genotype and Fluoropyrimidine Dosing: 2017 Update. Clin Pharmacol Ther. 2017
- Kerr et al., Adjuvant capecitabine plus bevacizumab versus capecitabine alone in patients with colorectal cancer (QUASAR 2): an open-label, randomised phase 3 trial. Lancet Oncol 2016; 17(11): p. 1543-1557.
- Rosmarin et al., Genetic Markers of Toxicity from Capecitabine and Other Fluorouracil-Based Regimens: Investigation in the QUASAR2 Study, Systematic Review, and Meta-Analysis, J Clin Oncol 2014; 32 (10): 1031-39
- Rosman et al., A candidate gene study of capecitabine-related toxicity in colorectal cancer identifies new toxicity variants at DPYD and a putative role for ENOSF1 rather than TYMS. Gut. 2015, 64(1):111-20.
- 5. ESMO 2018 abstract: Palles et al., An evaluation of the clinical utility of a panel of variants in DPYD and ENOSF1 for predicting common Capecitabine related toxicities.
- 6. Deenen MJ et al. Upfront Genotyping of DPYD\*2A to Individualize Fluoropyrimidine Therapy: A Safety and Cost Analysis. J Clin Oncology 2016; 34 (3):227-234
- 7. NHS Outcomes Framework: at-a-glance. Department of Health 2016.